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Measurements of oxygen uptake and blood lactate content are central to methods for assessment of physical
fitness and endurance capabilities in athletes. Two important parameters extracted from such data of incre-
mental exercise tests are the maximal oxygen uptake and the critical power. A commonly accepted model of
the dynamics of oxygen uptake during exercise at constant work rate comprises a constant baseline oxygen
uptake, an exponential fast component, and another exponential slow component for heavy and severe work
rates. We generalized this model to variable load protocols by differential equations that naturally correspond
to the standard model for constant work rate. This provides the means for prediction of oxygen uptake re-
sponse to variable load profiles including phases of recovery. The model parameters were fitted for individual
subjects from a cycle ergometer test. The model predictions were validated by data collected in separate tests.
Our findings indicate that oxygen kinetics for variable exercise load can be predicted using the generalized
mathematical standard model, however, with an overestimation of the slow component. Such models allow
for applications in the field where the constant work rate assumption generally is not valid.

1 INTRODUCTION

Physiological quantities such as heart rate, lactate
concentration, or respiratory gas exchange are impor-
tant parameters to assess the performance capabilities
of athletes in competitive sports. In particular the res-
piratory gas exchange is a valuable source of infor-
mation since it allows for a non-invasive, continuous,
and precise measurement of the gross oxygen uptake
and carbon dioxide output of the whole body. Partic-
ularly in endurance sports, the metabolic rates of this
substantial fuel and the degradation product of the ex-
ercising muscles are reflected in that rate.

Characteristic responses to specific load profiles
in different intensity domains have been subject of re-
search effort in recent years (Poole and Jones, 2012;
Jones and Poole, 2005). The most distinctive parame-
ters in the description of VO, kinetics are the highest
attainable oxygen uptake (VOamay), the steady-state
level with submaximal load, and the rate of increase
in VO, at the transition to a higher load level. Basi-
cally, the oxygen uptake mechanism may be viewed
as a composition of first-order control systems, thus
responses to step-shaped load profiles are often de-
scribed as exponential functions that serve as a regres-

sion to measurement data.

In particular for endurance sports like cycling the
models for power demand due to mechanical resis-
tance are well understood. However, the individual
power supply model of an athlete is the bottleneck
that has hindered the design of an individual adequate
feedback control system that guides him/her to per-
form a specific task such as to find the minimum-time
pacing in a race on a hilly track (Dahmen, 2012). For
such purposes, a dynamic model for the prediction of
gas exchange rates in response to load profiles given
by a particular race course would be beneficial.

Stirling et al. (2008) provided a dynamic model.
However, it deviates significantly from several theo-
retical physiological aspects. E.g., it does not con-
sider separate fast and slow components and any de-
lays in the response to heavy and severe work rates.
Moreover, it does not provide a model for the steady
state oxygen demand as a function of exercise load,
and has not been applied to variable load profiles.

We propose that the first step towards dynamical
models for variable load should be derived from the
established models for constant work rate before more
general models are considered and can be compared
with the former ones. Therefore, in this contribution,



we generalize the original model equations towards
arbitrary load profiles and calibrate and validate them
using four load profiles of different characteristics.

2 PREVIOUS WORK

A detailed review and historical account of the
mathematical modeling of the VO, kinetics for con-
stant work rate (CWR) has recently been given by
Poole and Jones (2012), containing over 800 refer-
ences. See also Jones and Poole (2005) and, for a
clarification, Ma et al. (2010). Therefore, here we
only briefly summarize the established model as far as
necessary for an understanding of our generalization
and refer to the above mentioned works for further
explanations and references to literature.

According to the commonly accepted and widely
applied model the V O, kinetics can be separated into
four distinct components.

e Baseline component. This constant component
accounts for the oxygen consumption at rest, i.e.,
for the time prior to the onset of exercise.

e Rapid, initial increase (Phase I). At the start of the
exercise a rapid but small initial increase of VO,
occurs and is completed within the first 20 s.

e Primary, fundamental, or fast component (Phase
II). This phase is characterized by a (typically
larger) exponential increase of VO, with a time
constant of 2045 s. After saturation and for given
work rate below the lactate threshold, this compo-
nent represents the required steady-state demand
of oxygen.

e Secondary, slow component (Phase III). The slow
component occurs only for work rates above the
lactate threshold. It brings in an additional in-
crease of VO, to a total that for severe work rates
above the critical power is roughly equal to the
maximal oxygen consumption, VOomax-

Each of the components in Phases I to III are modeled
as exponential functions of type

A (1 exp ("f)) M

where time is denoted by 7 and with different am-
plitudes A, time delays 7', and time constants T, see
Figure 1. The time constant T determines the time
required for the dynamics of the corresponding com-
ponent to diminish the difference with the asymptotic
amplitude A by a factor of 1 — 1/e ~ 0.632. Thus,
after a time of 37 about 95% of the amplitude A is
realized and the corresponding phase is regarded as

VOnpase + Ao + A1 + A
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Figure 1: Steady-state dynamics consisting of a base-
line component V Oapaee together with three exponentially
asymptotic functions xo(¢), x;(¢) (fast component), and
x (1) (slow component) of different amplitudes, decay rates,
and delays.

effectively having reached its final value. It is impor-
tant to take note that the time delay 7 is intended to
imply that only after that time the oxygen consump-
tion of the corresponding component is beginning. To
complete the model, we therefore apply the Heaviside
step function (Ma et al., 2010)

1,:t>0
H(Z):{07t<0 )
setting

s =acte-1) (1-ew (-21)) @

yielding the complete model in one formula as

2
VO, (t)= V Oopase + Z X (1). 4
k=0

Here, V Oopase is the baseline component, and the in-
dex k = 0,1,2 refers to the components of the three
phases, which are parametrized by their correspond-
ing amplitudes Ay, time delays Tj, and time con-
stants T;. In Phase I there is no delay; 7o = 0. This is
the standard form of oxygen dynamics and illustrated
in Figure 1.

Phase I typically lasts only a couple of breaths un-
til reaching its target amplitude Ay and during this
short period of time at the onset of exercise there is
a large variability of the inter breath gas exchange
making it difficult to fit a model to an individual ven-
tilatory data series (Whipp et al., 1982). Therefore,
many researchers remove that time period from the
data and consider only the first, fast response and
the second, slow component (Jones and Poole, 2005,
page 26). The baseline amplitude would then have
to be incremented by the amplitude A to compensate
for the deletion of Phase I. In this study we also follow



this procedure. Thus, from here on, V Oapye refers to
the above mentioned baseline component (renamed as
V Oamin and measured directly) plus an estimated add-
on accounting for Ag.

In this kinetic model of V O, consumption for con-
stant work rate the amplitudes A; must be chosen
adaptively. They depend on the physiological and
metabolic condition of the subject and on the applied
constant work rate P. Thus, Ay = Ag(P). As a first ap-
proximation the amplitude of the first, fast component
can be taken as a linear function of exercise intensity
(power), with slope of 9—11 ml/min per Watt of power
increase and bounded by VOomax (Poole and Jones,
2012, page 939).

The second, slow component is more complex. It
is the sum of two parts. The first part is an increasing
function, which seems to start having nonzero values
from about the lactate threshold up to the value of crit-
ical power P., where the sum of all components is still
less than VOsmax. The exact form of this function has
not been determined. For power greater than critical
power the slow component for constant work rate ex-
ercise eventually raises the total oxygen consumption
up to VOsmax. Thus, for P > P, it can be modeled
as an affine linear, decreasing function which is the
difference between V Ozmax and the sum of the ampli-
tudes of the baseline and first, fast component.

This model has been validated with CWR and also
incremental exercise, where the slow component is
not or at least not fully apparent. In the following
section we propose a concrete parametrized model of
the total oxygen consumption following these find-
ings, summarized in Figure 5.

3 METHODS

Experimental setup

Five healthy, recreationally to well trained subjects
(age 37.84+14.8 yrs, height 180.44+10.1cm, weight
75.2+7.6kg) gave written informed consent to take
part in the study and were thoroughly informed about
the testing procedure. The subjects completed four
different cycle ergometer (Cylus2, RBM elektronik-
automation GmbH, Leipzig, Germany) tests with con-
tinuous breath-by-breath gas exchange and ventila-
tion measurements at the mouth (Ergostik, Geratherm
Respiratory GmbH, Bad Kissingen, Germany). The
tests were designed to determine a set of neces-
sary physiological parameters of aerobic capacity
(VOamaxs ventilatory threshold 1 (V77) and maximal
lactate steady state (MLSS)). Furthermore the tests
featured a variety of load profiles in order to compre-
hensively evaluate the model prediction quality.

The following paragraphs describe the four test
protocols in detail. See Figures 2 and 3 for a visual-
ization of the corresponding work rate and road gra-
dient profiles.

Test 1 (see Figure 2, top)

The testing procedure commenced with an incremen-
tal step test starting at a workload of 80 W with incre-
ments of 20 W every 3 minutes. In the initial step the
subjects were instructed to choose their preferred ca-
dence between 80—100 rpm and were then instructed
to keep the cadence constant in all four test trials.The
step test was terminated at volitional exhaustion of the
subject. After test termination subjects recovered ac-
tively at 80 W and at or near their self-selected ca-
dence for five minutes. In this test, additionally to
gas exchange recordings, blood lactate measurements
(Lactate Pro 2, Arkray Factory Inc., Shiga, Japan)
were sampled to determine the MLSS. Lactate probes
from the earlobe (0.3 pl) were taken at the end of ev-
ery step, at volitional exhaustion of the subject as well
as 1, 3, and 5 minutes after test termination. Physio-
logical parameter determination is explained in detail
in the next subsection below.

Test 2 (see Figure 2, bottom)
The second ergometer test consisted of four sprints of
6 s duration each and an incremental ramp test. Two
sprints were carried out before and two after the ramp
test to obtain the subjects’ maximal power output and
V O, profiles in a recovered and a fatigued state. Be-
fore each set of sprints subjects pedaled at 80 W for 5
minutes at their self-selected cadence. The two sprints
of each set were separated by 30 s of passive rest and
subsequent 2 min 24 s of active recovery at 80 W. The
ergometer load for the sprints was calculated on the
basis the subjects’ body weight multiplied by a fac-
tor of 5, expressed in Newton. Ten seconds before
each sprint subjects were instructed to increase their
cadence gradually in order to obtain their maximal
pedaling frequency directly at the start of the sprint
when the load was applied to the flywheel of the er-
gometer. The subjects were able to time their effort
by a countdown visually presented on a large screen.
In order to obtain approximately the same ramp
test time of 10 minutes for every subject, the end load
of the ramp protocol was estimated individually by
the highest exercise intensity reached in the incremen-
tal step test multiplied by a factor of 1.3. The start
load was set to 80 W, hence the increment per minute
was obtained by the following formula: (Individual
end load of step test in Watt — start load of 80 W) / 10
minutes. Workload was increased every second until
the subject terminated the test volitionally.
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Figure 2: Test protocols of the first (top) and second (bot-
tom) cycle ergometer test (see text for details). Dashed
lines indicate individual variability in maximal power out-
put achieved during the test. The angle o indicates indi-
vidual variability in the calculated slope of the workload
increase.

Test 3 (see Figure 3, top)

In the third test subjects had to complete a variable
step protocol. The steps varied in load and duration
and alternated between low and moderate or severe
intensity. The linearly in- or decreasing intensity be-
tween the steps was also varied in time. The intensi-
ties were calculated in relation to the MLSS. In short,
the step protocol looked as follows: 4 min at 80 W,
4min at 75% MLSS, 2min at 40% MLSS, 2 min
at 95% MLSS, 2 min at 45% MLSS, 4 min at 85%
MLSS, 3 min at 90 W, 2 min at 100% MLSS, 5 min at
80W, 2min at 105% MLSS, 2 min at 70 W, 1 min at
60% MLSS, and 2 min at 80 W. Fixed workloads for
some intervals have been used because the ergome-
ter was not able to handle workloads that were be-
low 40% of MLSS for some subjects. Subsequently,
a constant load all-out exercise at 140% MLSS fol-
lowed. This interval lasted from 1.5 to 4.5 minutes
between subjects. The final interval was designed as
a recovery ride at 80 W for 5 minutes.

Test4 (see Figure 3, bottom)
For the final ”synthetic hill climb test” the ergome-
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Figure 3: Test protocols of the third (top) and fourth
(bottom) cycle ergometer test (see text for details). The
dashed line in Test 3 indicates individual variability of time
achieved at 140% of MLSS workload.

ter was controlled by our simulator software (Dahmen
et al., 2011). The load was defined by a mathemati-
cal model (Martin et al., 1998) to simulate the resis-
tance on a realistic track. The gradient of that track,
depicted in Figure 3, and the subjects’ body weight
were the major determinants of the load. While hold-
ing the same cadence as before, the subjects were able
to choose their exercise intensity by gear shifting. (On
the steepest section most subjects were not able to
hold the cadence even in the lowest gear.)

Before each session the gas analyzers were cali-
brated with ambient air and a gas mixture of known
composition (15% O,, 5% CO, and N as balance).
The flow sensor was calibrated by means of a 3 liter
syringe. For an adequate recovery, test sessions were
separated by at least 48 hours. Subjects were in-
structed to visit the laboratory in a fully recovered
state and were asked to refrain from intense physical
activity two days prior testing. In all test sessions sub-
jects received strong verbal encouragement from the
investigators when they were in reach of their physical
limits. During all experiments subjects were aware of
relevant mechanical variables like power and cadence
displayed on a large screen. Cadence was held con-
stant throughout all tests except the sprints in Test 2



and the steep sections (>10% gradient) of Test 4. To
obtain a minimal V O (V Opmin) value, subjects stayed
seated for 30s on the ergometer before the start of
each test.

Physiological parameter determination

MLSS was determined on the basis of the incremental
step test. For clarity MLSS is used here interchange-
ably with the term critical power (P;) as it has been
shown to occur broadly at the same workload (Vautier
et al., 1995). However, this finding is not unanimous
as, e.g., Pringle and Jones (2002) have found that the
MLSS underestimated critical power by about 20 W
in their studies.

The MLSS is defined as “the exercise intensity
that is associated with a substantial increase in blood
lactate” (Svedahl and Maclntosh, 2003, page 300),
hence it was determined as the workload before an
increase in lactate concentration of at least 1/10th of
the maximal lactate concentration (reached at the test
abortion or in the recovery phase) could be observed.
The step before this substantial blood lactate increase
was chosen for the MLSS intensity, see Figure 4.

To set the corresponding critical power P, we
added +3 W to the power at MLSS, depending on the
amount of increase before and after the MLSS in or-
der to avoid having a workload in the tests that oscil-
lates around the critical power P, at which point the
steady-state model for oxygen demand has a discon-
tinuity as explained in the next subsection.
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Figure 4: Example for the method of determining MLSS in
the lactate curve for Subject 5.

VT was determined visually on the basis of the
ramp protocol in Test 2. The method used is de-
scribed in detail in (Beaver et al., 1986). Briefly, plots
of VE/VCO,, VE /VO,, end-tidal PCO, (PETCO5),
end-tidal PO, (PET O;) and respiratory exchange ra-
tio (RER) vs. time were analyzed. The first criterium
for VT is an increase in the VE /VO, curve after it
has declined or stayed constant, without an increase in

Table 1: Parameters extracted from ergometer tests.

Mean+c
0.354+0.070

Param. Unit Description
VOomin l/min minimal VO,

VT w first vent. thresh. 183426
VOomax /min maximal VO, 4.708+0.873
P 4 critical power 260471

VE /VCO,. The second criterium is a slowly rising or
constant PETCO; curve together with a beginning in
the rise of the PET O, curve after it has followed a flat
or declining shape. The third criterium is a marked in-
crease in RER after following a horizontal or slowly
rising shape.

V Oomax Was determined as the highest VO, of a
10-value moving average obtained in any of the four
tests. In 4 out of 5 subjects the test with the highest
V Oamax Was the ramp test. The other subject reached
V Osmax in the incremental step test.

V Osmin Was determined as the lowest VO, value
obtained during the 30 s resting phase in any of the
four ergometer tests.

The steady-state oxygen demand model

Following the model assumptions from the literature
as summarized in Section 2 we propose a steady state
oxygen demand given by a constant baseline com-
ponent, the first, fast component, and the second,
slow component with amplitudes V Oapyse, A1 (P), and
A;(P), respectively. The exact form of the slow com-
ponent for loads below the critical power is not spec-
ified in the literature and we propose an exponential
function, parametrized by its amplitude and growth
rate. In terms of formulas, the amplitudes are

A (P) = min(s -P, VOZmax - VOZbase) &)
Va-exp(—(P.—P)/A)  P<P

Ay(P) =< ¢ . 6

2( ) {VOzmax —VOnbase _AI(P) P>PF ©)

where s is the slope (or gain) for the fast component of
about 9—11 ml/min/W, P, denotes the critical power,
Vi is the maximal amplitude of the slow component
for exercise load up to critical power, and A is the
corresponding decay constant that governs the decay
of the steady-state slow component as the load is de-
creased from the critical power. Figure 5 depicts the
graph of the sum of all components in this model.
The parameters for this steady state oxygen de-
mand model were determined directly from ergome-
ter tests (VOomax and P, see Table 1) or by least
squares fitting to data from one or more ergometer
tests (V Oapase, S, Va, and A, see Table 2). For the fit-
ting procedure appropriate search ranges for the pa-
rameters are also specified in Table 2. These ranges
are based on experimental evidence (V Oppase, A) Or
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Figure 5: Model of the steady state oxygen demand for the
baseline, fast, and slow components.

Table 2: Summary of parameters for the model of the
steady state oxygen demand. We set the value for the upper
limit of the slow component amplitude, Vamax = V Oomax —
VOopase — sFc.

Param. Unit Description Range

VOjpase I/min  baseline VO, [V O2min, 1.0]

s 1/min/W exercise economy [%ﬁ;‘:‘“, &ZC‘“'“]
VA I/min  ampl. slow comp. [0, VAmax]

A W range slow comp. [0,P; — VTj]

by constraints of the model. E.g., the upper bound
V Ormax /P for the slope s stems from the extreme
case where V Oopase = 0 and VO, (P.) = V Oppmax.

Dynamic model of oxygen consumption

Now let us extend the steady state oxygen demand
model so that it becomes dynamic allowing for a
variable load profile P(¢). The response of the fast
and slow component in the case of a constant work
rate demand is given by Eq. (1), A (1 —exp (f%) )
Note that this function is the solution to the linear or-
dinary differential equation initial value problem

i=11'(A-x), x(0)=0 (7)

however, delayed by the delay time T or, equivalently,
the solution for initial value x(7') = 0. This suggests
the following equations for the first and second com-
ponent, x; (1), x2(1),

=T (AP) —x), w(T)=0, k=12 (8)

defined for times ¢t > T; (and setting x(t) = O for
t < T). Here, the power demand is a function of
time P = P(r) and A (P), k = 1,2, are the steady state
amplitudes for the fast and slow components given in
Egs. (5,6). The total VO, accordingly is given by

VOZ(I) = VOZbase + X1 (t) +x2(t)' (9)

Table 3: Parameters for the dynamic model of oxygen con-
sumption. Together with the model for steady state oxygen
demand there are 10 parameters to be estimated.

Param. Unit Description Range

T S time constant fast comp. [20,45]
T S time constant slow comp. [120,240]
T S time delay fast comp. 0,20]

b3 S time delay slow comp. 60,150]

The differential equations require the four param-
eters T1,T2, 71, and T that are listed together with
their corresponding ranges in Table 3. These ranges
are set in accordance with empirical findings reported
in the survey article of Jones and Poole (2005).

We remark that the above VO, model does not dis-
tinguish on- and off-transient dynamics, i.e., the VO,
demand and time constants are the same regardless of
whether the current VO, value is below (on-transient
case) or above the VO, demand (off-transient case).
There is, however, some evidence for an asymme-
try of dynamics in some of the exercise intensity do-
mains, although this has received little attention in the
literature (Poole and Jones, 2012, p. 940). For sim-
plicity, in this contribution we stay with the symmet-
ric model and leave the modeling of asymmetric dy-
namics for future work.

Data preprocessing

In order to estimate the ten parameters of the dy-
namic model given by Egs. (5,6,8) for a particu-
lar subject, data series of time-stamped values of
produced power and resulting breath-by-breath oxy-
gen consumption are required for exercise intensities
ranging from moderate to severe. These time series
from ergometer laboratory experiments are typically
very noisy, have different sampling rates for VO, and
power, and samples may be irregularly spaced.
Therefore, a combined smoothing and resam-
pling operator has to be applied before param-
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Figure 6: Data filtering for ventilatory and power data.



Table 4: Root-mean-square errors of model fit. Parameters have been fitted for each case separately. The
approximation quality is expressed by root-mean-square error (rms), maximum error (max), and signal-to-noise
ratio (snr). For each subject the best rms, max, and snr values are highlighted in bold font.

Test 1
rms max snr
I/min I/min dB

Test 2
rms max snr
I/min I/min dB

rms max snr
I/min l/min dB

Test 3 Test 4
rms max snr

I/min /min dB

Average
rms max snr
I/min I/min dB

Subject 1 0.10 0.59 32.0 041 1.25 17.7 0.17 0.71 26.3 0.28 0.76 234 0.24 0.83 24.8
Subject 2 0.20 0.94 23.2 0.20 0.80 22.2 0.13 0.65 26.2 0.35 0.89 193 0.22 0.82 22.7
Subject 3 0.17 0.49 234 0.18 0.61 21.7 0.12 0.55 24.7 0.38 1.00 17.0 0.21 0.66 21.7
Subject 4 0.15 0.66 25.2 0.17 0.64 22.2 0.26 1.16 19.1 0.30 0.63 19.9 0.22 0.77 21.6
Subject 5 0.23 1.12 222 0.24 0.90 21.0 0.17 0.54 24.1 0.40 0.81 189 0.26 0.84 21.6
Average 0.17 0.76 25.2 0.24 0.84 21.0 0.17 0.72 24.1 0.34 0.82 19.7 0.23 0.79 22.5
Table 5: Parameters of the fitted model for the subjects from Test 3.
Parameter VOomax  VOopase s P Va A Ti Tl b3 T
Unit I/min I/min I/min/W W Vmin W min min min min
Subject 1 6.09 0.94 10.6x1073 383 033 98 0:049 0:32.2 2:385 3:34.4
Subject 2 4.63 0.83 1051073 243 050 24 0:04.1 0:229.8 2:417 3:174
Subject 3 3.85 0.45 109x1073 203 024 24 0:066 0:29.0 2:422 3:422
Subject 4 4.10 0.96 8.1x1073 217 1.05 13 0:022 0212 1:046 3:50.7
Subject 5 4.87 0.89 9.7x1072 257 0.71 56 0:06.6 0:282 1:16.8 3:24.7
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Figure 7: Fitted models of steady state oxygen demand for
the five subjects.

eter estimation. In this study we have used
the standard Gaussian smoothing filter with kernel
(ov21)'exp(—0.5¢/c%) and 6 = 20s and 3's for
respiratory and power measurements, respectively.
The filter was applied at time instants uniformly
spaced at 1 s intervals. Figure 6 gives an example of
measured time series and their smoothed and resam-
pled version.

Parameter estimation

Parameter estimation was done by least squares fit-
ting, minimizing mean squared error between com-
puted model values and the (smoothed) VO, data.
Testing has shown that fitting versus the smoothed
VO, data produced better results than against noisy
measured data. Non-linear least squares fitting may
suffer from the presence of many local minima. Thus,

commonly applied optimization algorithms like the
downhill simplex method typically get stuck in these
and results largely depend on the choice of initial pa-
rameters. Thus, we adopted a genetic algorithm (from
MATLAB®) which provided better minima by use of
its stochastic elements.

Model validation

We calculated model parameters for each ergometer
test of each participating subject. To express the qual-
ity of the model fit to the data we computed the root-
mean-square differences. To validate the predictive
power of the model we selected Test 3 for each sub-
ject for parameter fitting, and used the other tests for
comparing the model predictions of oxygen consump-
tion with the measured values.

4 RESULTS

The VO, model as given by Egs. (5,6,8,9) was
fitted to the data for all four tests and five subjects,
resulting in 20 sets of model parameters. The corre-
sponding model errors were calculated by solving the
initial value problems (8) and summing up the compo-
nents according to Eq. (9). The resulting model errors
are given in Table 4.

Overall, the average VO, modeling rms error was
0.23 £0.08 /min. Figure 8 illustrates the VO, and
power data, and the fitting result for Subject 2, whose
average rms error is the median of errors for subjects.
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Figure 8: VO, fitting for Subject 2 on all four tests. The
lower curves show the power, and the upper two parts depict
the recorded and the best fitting V O, curves. The noisy grey
signals are the original (unfiltered) measurements.

In the modeling phase, we find that Test 3 per-
formed best, with the smallest average VO, rms error
of 0.17/min. The corresponding parameter sets for

Table 6: Root-mean-square errors of model predictions for
the three tests in the validation set.

Test1 Test2 Test4  Average

I/min  I/min  1/min I/min
Subject 1 0.19 0.59 0.44 0.41
Subject2  0.26 0.30 0.50 0.35
Subject3  0.20 0.33 0.43 0.32
Subject4  0.25 0.27 0.40 0.31
Subject5  0.30 0.36 0.78 0.48
Average 0.24 0.37 0.51 0.37

each of the subjects are given in Table 5 and visual-
ized in Figure 7.

In the validation we used the parameters resulting
from the model fitting using Test 3 for the prediction
of the VO, consumption in the other tests. For the
model simulation we used the measured power as in-
put for the differential equations. We recorded the
corresponding rms prediction errors in Table 6.

Figures 10 and 11 visualize the prediction of the
VO, model. We present the graphs of the VO, pre-
diction and the measured VO, against time for the
incremental Test 1 and Test 4, where subjects were
self-pacing themselves. Note, that the model predic-
tion errors are mostly positive, i.e., the model over-
estimated the actual VO, consumption, especially at
times of severe exercise intensity.

S DISCUSSION

Overall, the results show that in principle the ap-
proach to transfer the dynamic steady-state model
from constant work rates to variable work rates was
successful. Parameters could be estimated such that
measured VO, data could be approximated with a
small rms error of about 0.23 1/min. For model pre-
diction the average error was around 0.37 I/min. The
results are even better for work rates in the moderate
to heavy exercise intensity domain, as can be seen in
Figures 8 and 10.

To illustrate and discuss the dynamics of the dif-
ferential equation model for the oxygen dynamics
we provide Figure 9 that visualizes the total oxygen
consumption and the corresponding slow component,
both with respect to the oxygen demand, VOopase -+
A1(P(t)) +A2(P(1)) and A2(P(t)), respectively, and
the modeled responses of the system, VO,(t),x(t).
Moreover, the corresponding oxygen consumption
measurements as well as the applied power P(f) is
included. The exponential asymptotic dynamics for
piecewise constant demands are clearly visible. Also
note the delayed reaction, especially of the slow com-
ponent. A large oxygen demand in the slow compo-
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Figure 9: Steady-state demand and dynamic model for Sub-
ject 2 on Test 3. See text for details.

nent may trigger a delayed overcompensation, lead-
ing total VO, estimates that are to too large, e.g., near
t = 50 min.

Therefore, for severe work rates it seems that the
model overestimates the slow component, leading to
excess VO, contributions. This can be clearly seen
in Figure 8 (bottom graph) at about 40 to 50 min-
utes in the test. During the whole 10 minutes the
modeled VO, demand was above the critical power
(243 W). There, the slow component drove the mod-
eled VO, towards V Oomax, While the measured VO,
stayed about half a liter per minute below that.

A possible explanation of this artifact is that the
estimation of the critical power by MLSS may have
been too small due to an imprecise empirical MLSS
estimate, or because in our cases the critical power
was significantly above the MLSS, as in the experi-
ments of Pringle and Jones (2002), already mentioned
before. Another possibility is that the slow com-
ponent generally is not well understood yet, thereby
having led to an inadequate steady state model upon
which our model is based. This limits the dynamic
phenomena that can be captured to those that are
known and were described in the literature. More-
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Figure 11: VO, model prediction for Test 1 for all five sub-
jects (from Subject 1 at the bottom to Subject 5 at the top),
based on parameters gained from parameter estimation on
Test 3.

over, some findings or assumptions about the type of
functional dependencies are controversial, in partic-
ular regarding the slow component, see (Poole and
Jones, 2012, page 953). For example, it is not clear
at all, that the slow component in constant work rate
exercise tests at heavy and severe work rates is asymp-
totically exponential as expressed in Eq. (1) (Gaesser
and Poole, 1996, pages 43, 44).

Therefore, instead of enforcing the slow compo-
nent one might conjecture that a dynamic model that
discards the slow component would yield better pre-
diction results. In order to check this in a quick test,
we zeroed the slow component in the parameter fit-
ting procedure. The results for prediction of Test 4
are shown in Figure 12, compare with Figure 10. We
see that the results indeed look better than with the
slow component for most of the model predictions.
However, for the other validation tests the predictions
using the slow component are better. Still, this in-
dicates that there is a good opportunity for improve-
ments of the mathematical model beyond the direct
transfer from constant to variable work rates.

I
0 10 20 30 40 50 60
Time (min)

Figure 10: VO, model prediction for Test 4. The curves are
given for Subjects 1 to 5 from bottom to top, respectively.
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Figure 12: VO, model prediction for Test 4 as in Figure 10.
Here, the model was trained without the slow component.



6 CONCLUSIONS AND FUTURE
WORK

We contributed to the generalization of the com-
monly accepted model of the dynamics of oxygen up-
take during exercise at constant work rates to vari-
able load protocols by means of differential equations.
We showed how parameters in the model can be es-
timated and that the mathematical dynamical model
can be used to predict the oxygen consumption for
other given load profiles. We found for five subjects
and four very different test protocols (of up to about
one hour length) that on average the modeling rms er-
ror of VO, was 0.23 +0.08 I/min and the prediction
rms error in three tests was 0.37 +0.16 1/min.

The model overestimated the slow component,
however. Therefore, we plan to let the critical power
be a parameter that can be fitted to training data in-
stead of using the MLSS as an estimate. For such a
study the MLSS can serve as a lower limit of the al-
lowable range of values for critical power.

Moreover, a closer study of the slow component
in a set of constant work rate (CWR) tests should be
carried out by our five subjects. From such lab tests
one can also compare the modeling error for the vari-
able work load exercises undertaken for this contribu-
tion with those for CWR tests in order to gain an un-
derstanding of how much of the modeling precision
of CWR carries over to the variable work load case
when using the direct generalization of the mathemat-
ical modeling as given in this paper.

An alternative approach to modeling would be
to allow for different, more appropriate degrees of
freedom in the mathematical model, again fitting the
model type and parameters to empirical data, and
calculating model and prediction errors. For exam-
ple, we may assume as above two additive model
components (besides a constant baseline oxygen con-
sumption) with different delay times and decay rates,
however, with corresponding steady state oxygen de-
mands that are restricted only by requiring (piece-
wise) monotonicity and that can be parametrized by
a set of six parameters, the same number as in this
contribution.

With such an approach, we expect a better data
fitting. It remains open whether also the predic-
tive power is better than for our current model and
whether the results can be interpreted in harmony
with the current understanding of sport physiology
and sport medicine.
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